Вестерн блоттинг ошибки при выполнении. ОФС.1.7.2.0022.15 Определение подлинности и чистоты иммунобиологических лекарственных препаратов методом вестерн-блот

Вестерн блоттинг

Профессор кафедры биохимии
и молекулярной биологии,
Д.м.н. Спирина Людмила
Викторовна
Вестерн блоттинг

Определение. Вестерн-блоттинг
(вестерн-блот,

аналитический
метод,
используемый для
определения
специфичных
белков в образце.

Определение. Вестерн-блоттинг (вестерн-блот, белковый иммуноблот, Western bloting)

Определение. Вестерн-блоттинг
(вестерн-блот,
белковый иммуноблот, Western bloting)
Вестерн-блоттинг был разработан в лаборатории
Джорджа Старка (Стенфорд, Великобритания)
Название вестерн-блот было дано технике У.
Нейлом Бурнеттом и является игрой слов от
названия Саузерн Блоттинг (Southern blotting). методики определения ДНК, разработанной
ранее Эдвином Саузерном

Вестерн-блоттинг был разработан в лаборатории Джорджа Старка (Стенфорд, Великобритания)

Western Blotting –
метод определения
белков
Саузерн блоттингметодики
определения ДНК,
разработанной
ранее Эдвином
Саузерном Southern
blotting).
Аналогичный метод
определения РНК
называется Нозерн
Блоттинг (Nothern
blotting).
Детекция
посттрансляционных
модификаций белков
называется Истерн
Блоттингом (Eastern
blotting).

протокол. ПРОТОКОЛ

ПРОТОКОЛ
1. Разделение белков
методом SDS-PAGE гельэлектрофореза/
С помощью гель-электрофореза
белки разделяются в
полиакриламидном геле.
2. Перенос белков на
мембрану
3. Блокирование и Детекция
Затем их детектируют с
использованием антител:
сначала белки связываются с
первичными (моно- или
поликлональными) антителами,
которые в свою очередь
связываются
со вторичными антителами,
конъюгированными с ферментами
(пероксидазой хрена или
щелочной фосфатазой).

протокол. Вестерн-блоттингом можно обнаруживать антиген в количествах менее 1нг.

протокол.
Вестерн-блоттингом можно обнаруживать
антиген в количествах менее 1нг.
4. Визуализация.
Высокая степень
разрешения достигается за
счет электрофоретического
разделения белков и
специфичности
моноклональных антител.
Визуализация
исследуемого белка
достигается путем
проведения
соответствующей
биохимической реакции с
образованием продукта,
который определяется
колориметрическим,хемилюминесцентным,
флюоресцентным методами
детекции.

5. Анализ.

Количество белка оценивается с
помощью денситометрии.

Southern Blotting Этим методом выявляют уникальные фрагменты ДНК, размер которых составляет приблизительно одну миллионную часть геном

Геномную ДНК (обычно
выделенную из
лейкоцитов или клеток
плода) расщепляют на
короткие фрагменты,
разделяют их в агарозном
геле, переносят на
мембрану, после чего
идентифицируют
специфические участки с
помощью гибридизации с
олигонуклеотидными
зондами.

Nothern Blotting

Аналог Southern Blotting.
Этот метод позволяет выявить специфическую
мРНК и оценить ее размер.

Eastern Blotting (является продолжением метода Вестерн блоттинг)

Определение метода Вестерн Блоттинг

Метод основан на
комбинации гельэлектрофореза и
иммунохимической
реакции «антигенантитело».

«Твердая фаза» для иммуноблота

пористые материалы типа
нитроцеллюлозы (PVDF) в виде
наполнителей в объеме или в виде
плоских листов или полосок стрипов
(англ. strip); стрипы используют в
методиках типа иммуноблота и
иммунохроматографии;
в пористых материалах существенно
больше площадь, на которой
сорбирован один из участников
взаимодействия; другие реагенты
диффундируют по порам.

Типы твердой фазы для Вестерн блоттинга

Подготовка образца

Образец может быть взят из цельной
ткани или из клеточной культуры. В Цельная ткань
Клеточная культура
большинстве случаев, твёрдые ткани
сначала измельчаются механически
с использованием блендера (для
образцов большого объёма), с
Механическое измельчение
использованием гомогенизатора
(меньшие объемы), или
обработки ультразвуком.
Различные детергенты детергенты,Измельчение гомогенизатором
соли и буферы могут быть
применены для
улучшения лизиса клеток и
растворения белков.
Обработка ультразвуком
Ингибиторы протеаз и фосфатаз част
о добавляются для предотвращения
расщепления образцов их
Измельчение в жидком азоте
собственными ферментами.
Подготовка тканей часто
выполняется при низких
температурах, чтобы
Ингибиторы протеаз, фосфатаз
избежать денатурации белка.
Условия, улучшающие
пробоподготовку
Детергенты, соли, буферы
производит гомогенизацию образцов за счет их встряхивания
в микропробирках или чашах вместе с твердыми шариками
Низкие температуры

Гель-электрофорез. Наиболее распространенный способ разделения белков - электрофорез в полиакриламидном геле в присутствии SDS по Лэмми

Гель-электрофорез. Наиболее
распространенный способ
разделения белков -
электрофорез в
полиакриламидном геле в
присутствии SDS по Лэмми

Гель-электрофорез

Гель-электрофорез
SDS вызывает
денатурацию белков
и поддерживает их в
денатурированном
состоянии, для
разрушения
вторичных и
третичных структур
белков используют
восстановители
дисульфидных
связей

Гель -электрофорез

Подлежащие
анализу белки в
присутствии
додецилсульфата
натрия приобретают
одинаковый
отрицательный
заряд, что делает
возможным их
разделение в
зависимости только
от молекулярной

Принцип электрофореза

Предварительно
денатурированные белки
вносят в карманы «треков»
(дорожек) акриламидного геля
с низкой концентрацией
(концентрирующий гель), что
позволяет их сконцентрировать
перед переходом в
разделяющий гель (с более
высокой концентрацией), где
происходит разделение белков
в зависимости от молекулярной
массы.
Белки мигрируют в
электрическом поле через
акриламидный гель к аноду,
при этом белки меньшего
размера двигаются быстрее.

Принцип электрофореза

Отличия в скорости
продвижения -
электрофоретической
подвижности приводит к
разделению белков на полосы.
Как правило, одну из
«дорожек» оставляют для
маркеров молекулярной массы
(смеси белков с известными
массами).

Окрашивание гелей

окрашивание белков в
гелях красителем
Кумасси
окрашивание белков в
гелях серебром
Для визуализации результатов электрофореза чаще
всего используют окрашивание белков в гелях
красителем Кумасси или серебром

В большинстве случаев результаты
электрофоретического разделения достаточно
получить путем визуальной оценки геля.
Однако, с целью получения достоверных данных и
надлежащего документирования результатов гель
сканируют на просвет при помощи высокочувствительного
денситометра, что позволяет надежно определять не
только положение белков в геле, но и оптическую
плотность белкового пятна.
Окрашивание
мембраны более
надежно

Анализ электрофоретического разделения белков, Блоттинг

С помощью специального программного приложения
можно определить такие параметры как
электрофоретическая подвижность белка, его
чистота, количество белка в пятне и др.
Чаще используют хемилюминесцентную систему
детекции белков – использование рентгеновских пленок
(Блоттинг)
Используют
программное
приложение ImageJ

Применение системы визуализации для WB (см. ниже)

Анализ электрофоретического разделения белков

Определение молекулярной массы исследуемого белка
предполагает необходимость калибровки геля по
молекулярным массам. Калибруют гель относительно
молекулярных масс белков-маркеров, которые
разделяют параллельно с исследуемым образцом.

Выбор % разрешающего геля.

концентрация
акриламида определяет
разрешающую
способность геля - чем
выше концентрация
акриламида, тем лучше
разделение
низкомолекулярных
белков. Низкая
концентрация
акриламида улучшает
разрешающую
способность гельэлектрофореза для
высокомолекулярных
Размер белка, kDa
%AA
36-205
5%
24-205
7.5%
14-205
10%
14-66
12.5%
10-45
15%

Перенос на мембрану Чтобы сделать белки доступными для антител и дальнейшей детекции, их вместе с полоской геля переносят на мембрану, изг

Перенос на мембрану
Чтобы сделать белки доступными для антител и дальнейшей детекции, их вместе с полоской
геля переносят на мембрану, изготовленную из нитроцеллюлозы или PVDF.
Мембрана накладывается поверх геля,
а поверх неё кладут стопку
фильтровальной бумаги.
Метод переноса белков
называется электроблоттингом и
использует электрический ток, который
переносит белки из геля на мембрану.
Белки перемещаются из геля на
мембрану с сохранением своего
расположения. В результате этого
«промакивания» (blotting) процесса
белки удерживаются на тонком
поверхностном слое мембраны для
детекции.
Оба варианта мембран используют изза их свойства неспецифично связывать
белки.
Связывание белков основано как
на гидрофобных взаимодействиях, так
и на электростатических
взаимодействиях между мембраной и
белком.
Нитроцеллюлозная мембрана дешевле
PVDF, но гораздо более хрупкая и хуже
выдерживает повторное нанесение
меток.

Виды электроблоттинга

Сухой
Влажный
Полусухой
(semidry)

Окрашивание белков на фильтре

Способ
окраски
Ponceau S
Чувствительность,
количество
белка
1-2µg
Нитроцеллюлоза
+
Нейлон
-
PVDF
+
Amido
Black
1.5µg
+
-
+
Comassie
blue
1.5µg
+
-
+
India ink
100ng
+
-
+
Biotinavidin
30ng
+
+
+
Colloidal
gold
3ng
+
-
+
Окрашивание
обратимое
постоянное, низкий фон
постоянное, высокий фон
постоянное
постоянное, бледнеет со
временем
постоянное

Подтверждение переноса белков на фильтр (окраска Ponceus)

Блокирование

Как только выбрана
мембрана, выбраны антитела
и целевой белок, должны
быть приняты меры по
исключению взаимодействия
между мембраной и
антителом, используемым для
детекции целевого белка (ибо
антитело само по себе белок).
Блокирование
неспецифичных связываний
достигается помещением
мембраны в разбавленный
раствор белка - обычно это
бычий сывороточный
альбумин или нежирное
сухое молоко или желатин
с небольшим процентом
детергента типа Tween-20.
Блокирование – один из
важных этапов
проведения
эффективного Вестерн
блоттинга

Механизм блокирования

Белок
из разбавленного
раствора прикрепляется к
мембране во всех местах,
где не прикрепился целевой
белок. Поэтому, при
добавлении антител, им
(антителам) нет свободного
места на мембране, куда бы
они могли прикрепиться,
кроме сайтов связывания на
специфичных целевых
белках. Этот фоновый
«шум» в окончательном
продукте вестерн блота
приводит к чистым
результатам и
исключению ложно-

Детекция. Непрямой и прямой WB

преимущества
Вторичное антитело усиливает сигнал (несколько вторичных
антител могут связываться с одним первичным)
Имеется широкий выбор вторичных антител
Одно вторичное антитела может быть использовано для
детекции различных специфичных антител
связывание с ферментативной меткой вторичного антитела не
влияет на иммунореактивность первичного антитела
Замена вторичного антитела может способствовать изменению
метода детекции
недостатки
Вторичные антитела способствуют образованию сайтов
неспецифичного связывания
Дополнительные этапы работы
преимущества
необходимость использовать только
первичные антитела, что ускоряет процесс
возможность использовать первичные
антитела с разными метками
Недостатки
связывание с ферментативной меткой
может снижать иммунореактивность
первичного антитела
высокая стоимость первичных антител
проблема выбора антитела и низкий
сигнал

Детекция. Следующим этапом является реакция связывания исследуемого белка со специфическим антителом (первичным).

Раствор антител и мембрана
могут быть вместе закрыты и
инкубированы от 30 минут
до оставления на ночь.
Также они могут быть
инкубированы при
различных температурах,
при повышенной
температуре наблюдается
лучшее связывание.
После удаления
несвязавшихся первичных
антител, мембрану
выдерживают со вторичными
антителами и в соответствии
с их целевыми свойствами,
как правило называются по

Антитела для вестерн блоттинга. Механизм детекции.

Антитела получают из
животного источника и
связываются с
большинством первичных
антител. Вторичные
антитела обычно связывают
щелочной фосфатазой или
пероксидазой хрена.
Наиболее
распространенные,
связанные с пероксидазой
хрена вторичные антитела
используются для
разрезания
хемилюминесцентного
агента, и продукт реакции
производит люминесцентное
излучение пропорционально
количеству белка.
Лист светочувствительной
фотографической пленки
помещается напротив мембраны
и подвергается действию
излучения реакции, создавая
изображение полос антител на
блоте.
Более дешевый, но менее
чувствительный подход с
использованием 4хлорнафтольного окрашивания
в смеси с 1 % перекисью
водорода, что дает темнокоричневое окрашивание,
которое регистрируется без
использования специальной
фотографической пленки.

Другой метод детекции
вторичными антителами
использует антитела со
связанным флюорофором,
который излучает в
ближней инфракрасной
области (NIR). Свет,
излучаемый
флюоресцентным
красителем, постоянен и
делает флюоресцентную
детекцию более точным и
чувствительным способом
измерения разницы в
сигнале, производимом
белками, которые мечены
антителами, на вестерн
блоте.

Детекция. Другие методы детекции.

Третий альтернативный
метод использует
радиоактивную метку
вместо фермента,
связанного с вторичным
антителом (с
радиоактивным изотопом
йода). Другие методы
безопаснее, быстрее и
дешевле, поэтому
радиоактивная детекция
используется редко.

Визуализация.

Визуализация
осуществляется с
помощью гельдокументирующих
систем или цифровой
камерой.

Представление фильма

Stain free technology

На практике, не во всех
вестернах обнаруживают
белки лишь по одному бэнду
на мембране.
Приблизительный размер
вычисляют сравнивая
окрашенные бэнды с
маркерами молекулярной
массы, добавленными при
электрофорезе.
Процесс повторят с
структурными белками,
такими как актин или
тубулин, которые не
меняют между
экспериментами. Количество
целевого белка зависит от
количества контрольного
структурного белка между
группами. Этот прием
обеспечивает коррекцию
количества общего белка на
мембране в случае ошибки

Анализ и представление результатов.

Использование
программного
приложения Image
J.
Программного
приложение BioRad

ИГХ
Иммунная
флюоресценция
Вестерн
блоттинг

Применение метода

Вестерн-блоттинг
используется
в молекулярной
биологии, биохимии, гене
тике и в других
естественно-научных
дисциплинах.
В медицине:
диагностика ВИЧ
(СПИД), болезнь
лайма,Helicobacter
Pylori, вирус ЭпштейнБарр

Полный протокол

1. электрофорез
2. перенос
3. блокирование
4. инкубация с
первичным антителом
5.отмывка
6.инкубация со
вторичным антителом
7. отмывка
8. обработка
хемилюминесцентной
системой детекции
9. детекция с помощью
рентгеновской пленки
10. анализ

Применение в практической медицине

Подтверждение
инфицированности ВИЧ
Диагностика клещевого
боррелиоза (болезнь Лайма)
Диагностика сибирской язвы
Диагностика токсоплазмоза
(Т);
группу инфекций –
гепатиты, сифилис,
хламидиоз, листериоз и др.
(О);
краснуху (R);
цитомегаловирусную
инфекцию (С);
герпес (Н).
Вирус Эпштейн-Барр
В этом случае на тестовые стрип-мембраны нанесены
только
клинически
значимые
антигены
(нативные,
синтетические или рекомбинантные) в определенном
порядке. Такой подход используют для дифференциальной
диагностики нескольких инфекций на одном стрипе

Блоттинг (от англ. "blot " - пятно) - перенос НК, белков и липидов на твердую подложку, например, мембрану и их иммобилизация.


Методы разделения молекул для блоттинга:
  • электрофорез в полиакриламидном геле:
  • o в денатурирующих условиях с добавлением мочевины - разделение коротких одноцепочечных НК;
    o в денатурирующих условиях с добавлением натрия додецилсульфата (электрофорез по Лэммли) - разделение белков по молекулярной массе;
    o в нативных условиях - разделение белков по трехмерной структуре;
  • изоэлектрофокусирование - для разделения белков по изоэлектрической точке (pI);
  • двумерный (2D) электрофорез - для разделения белков в двух направлениях - по изоэлектрической точке и по молекулярной массе;
  • электрофорез в агарозном геле - разделение НК:
  • o по длине линейных фрагментов;
    o по "суперспирализации" кольцевых молекул;
  • тонкослойная хроматография - разделение липидов из липидных комплексов.
Методы переноса:
  • диффузия молекул - медленный перенос, часто применяется для липидов;
  • капиллярный блоттинг - мембрана прижимается к гелю, поверх нее кладется стопка фильтровальной бумаги, буфер для переноса увлажняет гель и поднимается под действием капиллярных сил, смачивая фильтровальную бумагу и перенося макромолекулы из геля на мембрану; капиллярный блоттинг может осуществляться:
  • o в камерах с увлажнением геля буфером - "полусухим" переносом;
    o в камерах с погружением геля в буфер;
  • вакуумный блоттинг - аналогичен капиллярному блоттингу, но перенос ускоряется за счет использования вакуума вместо капиллярных сил, создаваемых при смачивании фильтровальной бумаги;
  • электроблоттинг - перенос заряженных макромолекул на мембрану происходит под действием электрического тока;
  • "пришивание" НК к мембране под действием УФ-облучения или нагрева - для окончательного закрепления на нейлоновых мембранах;
  • дот-блоттинг (слот-блоттинг) - нанесение образца производится в виде точки или черточки непосредственно на мембрану без предшествующего разделения молекул в геле или на ТСХ-пластине.
Типы мембран:
  • PVDF-мембраны (поливинилиденфторидные);
  • NC-мембраны (нитроцеллюлозные);
  • нейлоновые мембраны (применяются для НК).
Способы мечения и детекции макромолекул на мембране:
  • окрашивание - связывание красителя (ионов серебра, Кумасси, Понсо, этидия бромистого) непосредственно с детектируемыми макромолекулами;
  • иммунохимическое мечение - мечение макромолекул происходит за счет специфически связывающихся с ними меченых антител, детекция осуществляется:
  • o иммуноокрашиванием - антитела метятся красителями, регистрируется поглощение света определенной длины волны;
    o иммуноферментно - антитела метятся ферментом, регистрируется количество окрашенного продукта, наработанного в ходе ферментативной реакции (ИФА);
    o хемилюминесцентно - антителя метятся репортерным ферментом, который в присутствии субстрата излучает свечение, регистрируется испускание света
    определенной длины волны;
    o флуоресцентно - антитела метятся флуоресцентной меткой, которая возбуждается светом определенной длины волны, регистрируется испускание света в
    более длинноволновой области;
  • радиационное мечение - в макромолекулы вводятся радиационные метки (радиоизотопы), детекция осуществляется с помощью:
  • o авторадиографии (наложением на мембрану фотопленки);
    o радиоимаджинга (количественного определения радиационной эмиссии и построения картины взаимного расположения меток);
  • гибридизация - связывание нуклеиновых кислот мечеными олигонуклеотидами с комплементарной структурой, детекция, как правило, осуществляется регистрацией испускания радиационного излучения или флуоресценции метки;
  • масс-спектрометрия - используется для прямого структурного анализа липидов.
Принятые названия разновидностей блоттинга:
  • Саузерн-блоттинг (блоттинг по Саузерну) - по фамилии Эдвина Саузерна, предложившего метод - определение последовательности ДНК в образце и определение числа копий генов в геномной ДНК. Переносу на мембрану предшествует расщепление образца эндонуклеазами рестрикции на фрагменты и их фракционирование электрофорезом в агарозном геле. Анализ на мембране осуществляется гибридизацией с мечеными олигонуклеотидами известной последовательности;
  • нозерн-блоттинг - определение последовательности РНК в образце и изучение генной экспрессии (определение мРНК). Аналогичен блоттингу по Саузерну, но исследуются выделенные из образца молекулы РНК, без расщепления эндонуклеазами. Разделение молекул проводят в агарозном геле с добавлением формальдегида (для денатурации РНК) или в полиакриламидном геле с добавлением мочевины (применяется для анализа микроРНК). Иммобилизация молекул РНК на мембране происходит за счет нагревания под вакуумом или "пришиванием" с помощью УФ-облучения;
  • вестерн-блоттинг - белковый иммуноблоттинг - аналитический метод, используемый для определения специфических белков в образце. Переносу на мембрану предшествует разделение белков в полиакриламидном геле. Анализ белков на мембране осуществляется иммунохимически;
  • фар-вестерн блоттинг - белковый блоттинг, используется для определения белок-белковых взаимодействий, аналогичен вестерн-блоттингу, но вместо антител используются другие белки, специфически связывающиеся с исследуемым белком;
  • соузвестерн-блоттинг - определение белков, связывающихся с ДНК, и сайтов в молекулах ДНК, с которыми связываются белки - аналогичен вестерн-блоттингу, но после денатурирующего электрофореза в полиакриламидном геле белки отмываются от натрия додецилсульфата в присутствии мочевины и за счет диффузии переносятся на нитроцеллюлозную мембрану. В качестве пробы используют меченые фрагменты ДНК разной длины, полученные расщеплением более крупного исследуемого фрагмента геномной ДНК. Связавшиеся молекулы ДНК затем вымываются из каждого комплекса белок-ДНК и анализируются электрофорезом в полиакриламидном геле;
  • истерн-блоттинг - определение посттрансляционных модификаций белков (связанных с ними липидов, гликополисахаридов, фосфатных остатков) - аналогичен вестерн-блоттингу, но используются антитела не к белкам, а к липидам, гликополисахаридам и т.д. Также в качестве проб используются помимо антител другие белковые молекулы связывающиеся с исследуемыми (например, лектин);
  • фар-истерн-блоттинг - анализ липидов, разделенных высокоэффективной тонкослойной хроматографией. Перенос на мембрану, как правило, осуществляется за счет диффузии. Регистрация производится прямым масс-спектрометрическим структурным анализом.

Содержание

- Введение
- Растворы
- Лизис образца
- Подготовка образца
- Проведение электрофореза
- Перенос белка из ПААГ на мембрану
- Окраска мембраны

Введение

Вестерн-блоттинг - аналитический метод, используемый для определения специфичных белков в образце, разделенных путем электрофореза в полиариламидном геле. Далее белки из геля переносят на нитроцеллюлозную или PVDF мембрану, затем детектируют исследуемые белки с использованием антител, специфичных к конкретному белку и проявляют, используя вторичные антитела.

Растворы

Буфер для лизиса
Буфер NP-40
150 мМ NaCl
1,0% NP-40 (Tergitol® тип NP-40)
50 мМ Трис-HCl, pH 8,0
Ингибиторы протеаз

Sample буфер (x5)
10% SDS
5% 2-меркаптоэтанол
50% глицерин
0,01% бромфеноловый синий
0,4 М Имидазол

Проверить pH и довести до pH 6,8

Разделяющий буфер (буфер нижнего, разделяющего геля)
400 мМ Трис-HCl
0,1% SDS
0,01% TEMED
0,1% персульфат натрия



Буфер для переноса (полусухой)
16 мМ Трис-HCl
200 мМ Глицин
0,1% SDS
20% метанол

Проверить pH и довести до pH 8,3

Буфер для блокировки
150 мМ NaCl
10 мМ Na 2 HPO 4
3-5% обезжиренного сухого молока



Буфер для промывки (PBST)
150 мМ NaCl
10 мМ Na 2 HPO 4
0,2% Tween-20

Проверить pH и довести до pH 7,5

Лизис образца

Приготовление лизата из культуры клеток

1. Поместите емкость с клетками на лед и промойте клетки охлажденным раствором PBS.

2. Полностью удалите раствор PBS, затем добавьте охлажденный буфер для лизиса (1 мл на 10 7 клеток/150 см 2 ; 0,5 мл на 5x10 6 клеток/75 см 2 ).

3. Отделите клетки от пластика, затем аккуратно перенесите суспензию клеток в охлажденную пробирку для центрифугирования.

4. Инкубируйте пробирку с суспензией при постоянном перемешивании в течение 30 минут при +4℃.

5. Отцентрифугируйте суспензию при +4℃. Реккомедуемая стандартная скорость 12000 об/мин в течение 20 мин, однако эти параметры необходимо определять для конкретного эксперимента и типа клеток.

6. Отберите полученный супернатант

Приготовление лизата из тканей

1. Отделите часть исследуемой ткани, используя чистые инструменты.

2. Поместите ткань в пробирку для центрифугирования. Добавьте в пробирку охлажденный буфер для лизиса (0,3 мл/5 мг ткани). Измельчите образец, использую гомогенизатор. Промойте лезвия гомогенизатора 0,2 мл охлажденным буфером для лизиса. Смыв добавьте к образцу. Избегайте излишнего разбавления образца. Минимальная концентрация при нагрузке составляет 0,1 мг/мл. Оптимальный диапазон - 1-5 мг/мл

3. Инкубируйте пробирку с суспензией при постоянном перемешивании в течение 2 часов при +4℃

4. Отцентрифугируйте суспензию при 12000 об/мин в течение 20 минпри +4℃

5. Отберите полученный супернатант

Подготовка образца

1. Определите концентрацию белка в полученных лизатах.

2. Определите необходимое для нагрузки количество белка и добавьте к образцу 5X Sample буфер в 4 раза меньшем объеме.

Мы рекомендуем использовать восстановленные и денатурированные образцы

3. Для восстановления и денатурации образца его необходимо прокипятить в Sample буфере при +100℃ в течение 5 мин.

Проведение электрофореза

Поместите одинаковые количества образцов и маркера молекулярных весов в лунки полиакриламидного геля. Нагрузка для лизата должна составлять 20-30 мкг общего содержания белка, нагрузка для чистого белка - 10-100 нг.
Проведите электрофорез белков в полиакриламидном геле

Размер белка % ПААГ
10-40 кДа 15 - 20 %
40-100 кДа 10 - 15 %
100-300 кДа 5 - 10 %
> 300 кДа 5 %

Возможно использование градиентных гелей

Перенос белка из ПААГ на мембрану

Для переноса можно использовать нитроцеллюлозную или PVDF мембрану. Активируйте PVDF мембрану предварительно вымочив ее в течение 1 минуты в метаноле. Перед проведением переноса, промойте ее в буфере для переноса. Мы рекомендуем использовать полусухой способ переноса белков на мембрану. Степень переноса белков на мембрану можно проверить, используя краску Ponceau S, перед блокировкой мембраны.

Подготовьте мембрану для переноса в соответствии с рисунком


Окраска мембраны

1. Ополосните мембрану раствором PBS.

2. Для блокировки мест неспецифического связывания проинкубируйте мембрану в буферном растворе для блокировки в течение ночи при +4℃ или в течение 40 минуту при +37℃ и постоянном перемешивании.

3. Для отмывки мембраны проинкубируйте ее 3 раза в растворе PBST в течение 5 минут при +37℃ и постотоянном перемешивании.

4. Проведите инкубацию с антителами к исследуемому белку в растворе PBS в течение 40 минут при +37℃ и постотоянном перемешивании.

5. Для отмывки мембраны проинкубируйте ее 3 раза в растворе PBST в течение 5 минут при +37℃ и постотоянном перемешивании

6. Проведите инкубацию мембраны с вторичными антивидовыми антителами (иммуноконъюгаты) в растворе PBS течение 40 минут при +37℃ и постотоянном перемешивании.

7. Промойте мембрану 5 раз в растворе PBST в течение 5 минут при +37℃ и постотоянном перемешивании.

8. Для детекции связавшихся антител, конъюгированных с пероксидазой хрена, рекомендуем использовать субстратный раствор DAB.

Вестерн-блот анализ по тестированию количества кальпастатина включал разделение тканевых белков (30 мкг на дорожку) методом электрофореза в 12% ПААГ в присутствии SDS (Laemmli, 1970) с последующим полусухим переносом полипептидов на нитроцеллюлозную мембрану (буфер: 48 мМ Трис-HCl, 39 мМ глицин, 0.0375% SDS, 20% метанол, pH 9.2). После инкубации (2 ч, 20°C) мембраны в буфере TBS (50 мМ Трис-HCl-буфер, 150 мМ NaCl, pH 7.5) проводили блокировку сайтов неспецифического связывания 5% раствором обезжиренного молока в буфере TBST (TBS с добавлением 0.1% Tween 20, pH 7.5) в течение 1 ч. Далее мембрану подвергали последовательному экспонированию с поликлональными антителами к кальпастатину (разведение 1: 2500 в буфере TBST; 1 ч) и с антителами к IgG кролика, конъюгированными с пероксидазой (разведение1: 2000 в буфере TBST; 1 ч); каждый из указанных этапов завершался многократной отмывкой буфером TBST. Мембрану подвергали стандартной обработке системой Immune-Star (Bio-Rad, США).

2.3.6 Другие методы

Концентрацию белка во фракциях определяли методом Брэдфорд (Bradford, 1976) с использованием бычьего сывороточного альбумина (BSA) в качестве стандарта.

Денситометрия полос на зимограммах и рентгеновской пленке проводилась с помощью стандартной программы “Image J”.

Статистическую обработку данных проводили с применением общепринятых методов вариационной статистики с использованием пакетов программ MS Excel и StatGraphics. Достоверность различий оценивали с помощью непараметрического критерия U (критерий Вилкоксона-Манна-Уитни), а также с использованием однофакторного дисперсионного анализа (Коросов, Горбач, 2007).

Глава 3.Результаты исследования и их обсуждение

3.1. Кальпаин/кальпастатиновая система у крыс, подвергнутых индуцированной бета-амилоидом нейродегенерации на фоне эстрогенной терапии

Нейродегенерация индуцировалась у крыс линии Вистар старших возрастных групп – 12 и 24 месяцев. Экспериментальное воздействие заключалось в интрацеребральном введении 42-членного фрагмента амилоидного белка-предшественника – Абета(1-42) (экспериментальная модель болезни Альцгеймера), а также сочетанном интрацеребральном введениие бета-амилоидного пептида и интраназальном введении нейропротектора (эстрадиола). Среди животных были выделены: группа контроля – ложно-оперированные (2 μл физраствора в область правого гиппокампа); первая опытная группа – 2 μл раствора пептида Абета(1-42) (соответствуют 5μг пептида) в область правого гиппокампа; вторая опытная группа – после аналогичной инъекции пептида Абета(1-42) ежедневное интраназальное введение 0,1 мг 17-бета-эстрадиола.

Было обнаружено, что в присутствии амилоидогенного пептида в нервной ткани происходит активация кальпаиновой системы, причем степень активации положительно коррелирует с интенсивностью гибели клеток нервной ткани (плотностью нейронов). Регуляция кальпаинов может осуществляться как на уровне синтеза ферментного белка (или отдельных его форм – продуктов разных генов), так и на посттрансляционном уровне за счет процессов аутолиза, связывания с эндогенным ингибитором кальпастатином или с аллостерическим регулятором – кальцием.

Обнаруженное методом казеиновой зимографии увеличение пула аутолизированных кальпаинов (118 кДа) в группе животных №2 отражает активацию кальпаинов in vivo. Наблюдаемая активация m-кальпаина (120 кДа), по-видимому, как и во многих других ситуациях, сопряжена с избытком кальция в цитоплазме. Еще одним подтверждением этого пути регуляции активности кальпаинов служит стабильный уровень их ингибитора – кальпастатина, обнаруженный в нашем исследовании.

Как оказалось, терапия эстрадиолом обращает эффект гиперактивации кальпаинов, при этом снижается как общая активность кальпаинов в нервной ткани, так и активность индивидуальных фракций. В присутствии эстрадиола меньшая доля предшественника кальпаина подвергается аутолизу, а следовательно, активации. Необходимы дальнейшие исследования механизма регуляции активности кальпаинов у экспериментальных животных, в частности, необходимы эксперименты, направленные на установление источника избыточного кальция и поиск средств, предотвращающих эти патологические токи.

Уровень синтеза протеасом в мозговой ткани невысок в сравнении с другими органами и имеет тенденцию к снижению с возрастом (при сравнении показателей у 18, 24 и 30-месячных животных), о чем судили по количеству альфа-1,2,3,5,6,7 субъединиц протеасом, формирующих альфа-кольца коровой 20S частицы, универсальной для 20S и 26S протеасом.

Было подтверждено изменение уровня экспрессии и активности катепсинов в разных зонах мозга у экспериментальных животных. Интрацеребральное введение бета-амилоидного пептида привело в нашем эксперименте к значительному повышению (p<0,05) экспрессии гена катепсина D в коре (правом полушарии) головного мозга крыс по сравнению с животными контрольной группы. В неокортексе крыс, которые после введения бета-амилоидного пептида получали эстрадиол, относительный уровень экспрессии данного гена не отличался от контрольных значений, то есть восстанавливался до нормального уровня. В области правого гиппокампа введение бета-амилоидного пептида привело к увеличению экспрессии гена катепсина D приблизительно в 7 раз (p<0,001). Последующее введение эстрадиола привело к еще большему возрастанию (в 30 раз) относительной экспрессии указанного гена (p<0,001).

Наши данные продемонстрировали значительное влияние бета-амилоида и эстрадиола на когнитивные функции крыс, оцененные с помощью водного лабиринта Морриса. У заранее обученных самок и самцов крыс после введения бета-амилоидного пептида в гиппокамп значительно (p<0,05) увеличилось время поиска скрытой подводной платформы. Последующее введение эстрадиола сокращало время поиска подводной платформы у животных обоих полов по сравнению с таковыми, получившими только бета-амилоид. При этом у самок время поиска уменьшилось более значимо (p<0,01), чем у самцов (p<0,05).

Результаты конфокальной микроскопии срезов мозга показали, что введение бета-амилоидного пептида привело к значительному увеличению уровня его иммунореактивности в тканях как правого, так и левого (в меньшей степени) полушария головного мозга. Эти результаты, наряду с поведенческими данными, свидетельствуют об эффективности введенного препарата амилоидного пептида и служат доказательством репрезентативности выбранной модели болезни Альцгеймера. Последующее введение эстрадиола привело к снижению количества бета-амилоида в мозге крыс почти до контрольного уровня. Сокращение амилоидных депозитов у крыс, получавших эстрадиол, свидетельствует о запуске в нервной ткани неких адаптационных процессов, направленных на их утилизацию.

Механизм нейропротекторной роли эстрадиола пока полностью не понят, хотя отмечен этот феномен давно. Использование эстрадиола в качестве нейропротектора продиктовано несколькими причинами. Во-первых, нейропротективный эффект эстрадиола довольно хорошо известен и описан в литературе (McEwen et al., 2001; Asimiadou et al., 2005; Lebesgue et al., 2009). Во-вторых, показано, что эстрадиол в полном смысле слова является нейростероидом, так как в мозге имеются все ферменты, необходимые для его синтеза (Stoffel-Wagner, 2001; Reddy, 2010). В-третьих, известно, что нейропротективное действие эстрадиола связано с его антиоксидантным (Behl et al., 1997) и антиапоптотическим (Asimiadou et al., 2005) действием, то есть с эффектами, противоположными эффектам пептида Aбета.

Полученные результаты могут свидетельствовать об адаптивной реакции нервной ткани на введение токсичного пептида. В некоторых публикациях указывается на то, что система лизосомальной аутофагии может принимать участие в деградации бета-амилоидного пептида (Nixon, 2007). Вероятно, эстрадиол стимулирует аутофагию белкового материала; об этом свидетельствуют как данные о содержании пептида Aбета в мозговой ткани, так и оценка активности и уровня экспрессии протеиназ лизосом. Методом флюоресцентной иммуногистохимии было установлено снижение количества бета-пептида у крыс, получавших нейропротективную терапию эстрадиолом.

На основании данных, полученных в эксперименте можно сделать следующие выводы. 1. Уровень экспрессии генов лизосомальных протеиназ CtsD, CtsB, CtsL и альфа-субъединиц протеасом и активность кодируемых ими ферментов в коре головного мозга крыс при старении снижается. Напротив, активность кальпаинов у животных старших возрастных групп повышается. 2. Уровень экспрессии и активности катепсина D, а также интенсивность кальций-зависимого протеолиза значительно возрастают в гиппокампе и коре головного мозга крыс после интрацеребрального введения бета-амилоидного пептида, при этом страдает когнитивная функция животных. 3. Введение эстрадиола на фоне бета-амилоидной интоксикации приводит к уменьшению содержания этого пептида в гиппокампе крыс и улучшению биохимических и поведенческих показателей у экспериментальных животных. 4. Фармакологическая активация лизосомальной функции эстрогенами может способствовать удалению Aбета при болезни Альцгеймера; нормализация кальциевого гомеостаза в этой ситуации предотвращает патологическую активацию кальпаиновой системы, а, вместе с тем, и потерю нейронов по кальпаин-зависимым путям клеточной гибели.

Вестерн-блоттинг — метод, который заключается в поиске специфических антител против бактерий, вызывающих болезнь Лайма. Что такое тест Вестерн-блот? Как интерпретировать результаты исследования?

Вестерн-блоттинг — это тест, который ищет антитела, которые организм вырабатывает против бактерий, вызывающих болезнь Лайма. На поверхности бактерий существуют антигены, против которых организм имеет специфические антитела в классе IgM и IgG. IgM.

Иммуноглобулины M (IgM) — производятся, когда наш организм впервые встречает данный патоген. Увеличение количества IgM против данного патогена указывает на начало процесса заболевания.

Иммуноглобулины G (IgG) продуцируются организмом после IgM, самый высокий уровень достигается около полугода после заражения, и в отличие от IgM антитела могут сохраняться в крови в течение очень долгого времени, даже нескольких лет.

Тест Вестерн-Блот — показания для проведения

Вестерн-блот используется во втором этапе диагностики боррелиоза — когда тест ELISA (первый тест) дал положительный или сомнительный результат. Однако он не используется, когда тест ELISA дал однозначно отрицательный результат.

Вестерн-блоттинг — в чём заключается тест?

Тест Вестерн-Блот на боррелиоз (болезнь Лайма) точно оценивает антитела к различным фрагментам бактерий. Различные антитела
против отдельных бактериальных фрагментов графически отражены как черные полосы на нитроцеллюлозной бумаге.

1. Для проведения теста необходимы два основных элемента: сыворотка крови пациента и убитые и фрагментированные культивируемые бактерии боррелиоза.

Не делайте этот теста вскоре после укуса клеща. Подождите минимум 4 недели. Стоимость исследования методом Вестерн-Блоттинг в обоих классах антител составляет около 2500-5000 рублей.

2. Под воздействием электрического тока происходит распределение на факторы, в первую очередь бактерий, полученной из культуры клеток, в том числе на бактериальные белки (антигены). Затем эти белки переносят на нитроцеллюлозную мембрану. Мембрана разрезается на полоски.

3. Полоска с антигенами, в сочетании с сывороткой крови пациента, окрашивается с использованием специальной методики, которая обнаруживает антитела, специфически связанные с антигенами Sprechete Borrelia.

4. В местах, где антитела пациента связаны с белками (антигенами) бактерий боррелиоза, мы замечаем характерные полосы (что указывает на инфекцию бактериями Лайма). Результат теста положительный.

Каждая полоса соответствует бактериальному белку (антиген). Если белки клеток Боррелиоза и антитела не соединяются, полоса не появится. Тогда результат отрицательный.

Тест Вестерн-Блот — когда надо делать?

Ранняя диагностика болезни Лайма проблематична из-за так называемого серологического окна. Это период от начала инфицирования до старта продуцирующего детектируемых антител организмом. В случае болезни Лайма серологическое окно длится в среднем 4 недели.

Выполнение тестов менее чем за 4 недели после укуса клещей создает риск получения ложноотрицательного результата.

Тест Вестерн-Блот — положительный результат

Наличие антител против Боррелий означает, что у вас болезнь Лайма. Однако трудно ответить на вопрос, активна ли инфекция или нет.

IgG-антитела, полученные в результате инфекции, можно обнаружить в крови даже через 10, а иногда через 20 лет после диагноза болезни Лайма.

Также случается, что обнаруженные антитела класса IgM (обычно считающиеся активным маркером инфекции) могут быть постоянными и также не указывают на активную инфекцию.

Тест Вестерн-Блот — отрицательный результат

Тест может дать отрицательный результат в начальный период заболевания, т.е. В первые несколько недель после укуса.

Вестерн-блоттинг может быть выполнен не только при подозрении Лайма, но также при заражении H. pylori (который вызывает язвенную болезнь) или ВИЧ.

Тест Вестерн-блот может дать ложно отрицательный результат и в другой ситуации — когда в старом хроническом боррелиозе производство антител было остановлено или когда антитела были полностью использованы в борьбе с этим заболеванием.

Если подозрение на болезнь Лайма сильное, исследование Вестерн-Блот стоит несколько раз повторять, например, каждые несколько недель, чтобы попасть на такой момент, когда антитела присутствуют в крови.

Наличие антител в активной болезни Лайма варьируется, и у человека с отрицательным результатом есть шанс получить положительный результат при повтороном тесте через несколько недель. Иногда подтверждение диагноза получают только после четвертого или пятого раза.

В этом случае некоторые врачи пытаются получить подтверждение инфекции по-другому: они лечат пациента антибиотиками в течение нескольких недель и через 5-6 недель они направляют его на Вестерн-блоттинг.

Лечение антибиотиками в течение такого времени не может излечить хроническое заболевание, но оно настолько изменяет иммунную систему, что в крови будет достаточно антител, чтобы их можно было обнаружить. Результат Вестерн-блот теста должен интерпретироваться врачом, который специализируется на лечении болезни Лайма

Тест ВБ может проводиться и во время антибактериальной терапии, но с антибиотиками вероятность положительного результата несколько меньше. Самый простой способ диагностировать болезнь с этим тестом — через 6 недель после прекращения терапии антибиотиками.

Важно

Интерпретация исследования — это интерпретация полос. Как правило, следует полагать, что чем больше полос, тем надежнее диагноз. Три полоски это уже действительно большая уверенность, а 5-6 полос — болезнь Лайма с практически 100% вероятностью.

Полосы IgM имеют большее диагностическое значение, поскольку они предполагают активную фазу клещевого боррелиоза, хотя обнаруженные антитела в IgM-классе (полосы IgM) могут быть постоянными и не указывать на активную инфекцию. Оказывается потому, что IgM высок в начале инфекции и, вопреки логике, при хронической болезни Лайма.

Повышенные уровни антител в классе IgG можно рассматривать как остаточную инфекцию, или это означает хроническое активное заболевание.

Даже отрицательный результат теста не означает, что болезнь Лайма отсутствует. Отрицательный результат теста означает только, что в крови нет антител против бактерий боррелиоза — это может иметь место, например, когда бактерии вошли в организм, а производство антител еще не началось (врачи называют этот период серологическим окном).

Из-за множества методов проведения этого исследования трудно сделать универсальные рекомендации относительно интерпретации. Каждая лаборатория использует свои критерии.

Болезнь может быть обнаружена только врачом-специалистом на основании симптомов и результатов лабораторных испытаний. Тест Вестер-Блот нельзя интерпретировать без учёта симптомов.